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1. Introduction

In non-critical strings of the type discussed in [1], one has a conformal field theory for-

mulated in general in a non-critical number of spatial dimensions with a central charge

deficit Q. This might either assume discrete values, as in the minimal models discussed

in [1], or possibly vary continuously, as in models motivated by brane world collisions [2].

In the latter case, the central charge of the corresponding world-sheet σ model describing

string excitations on the brane and in the bulk space is proportional to some power of the

relative velocity of the moving models (assuming that the collisions are adiabatic, so that

perturbative string theory applies).

In general, non-equilibrium situations in string cosmology, such as those that may

well have characterized the early Universe, can be described [2] at large times long after

the initial cosmic catastrophe that resulted in the departure from equilibrium, within the

framework of Liouville strings [3]. The latter are strings described by world-sheet σ-models

propagating in non-conformal backgrounds of, say, graviton and dilaton fields, that are

dressed by an extra world-sheet field, the Liouville mode φ, in such a way that conformal

invariance is restored. This construction enables strings to propagate in a non-critical

number of space-time dimensions.

It was argued in [2] that in some supercitical models, i.e., world-sheet σmodels with

a central charge surplus: −Q2 ≡ (C − c∗)/3 > 0 where c∗ is the critical central charge

of the conformal theory. the extra Liouville dimension, i.e., the zero mode of the world-

sheetLiouville field φ, can be identified with the target time. This identification follows from
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dynamical arguments on the minimization of the effective potential of the target-space-time

effective field theory, and is exemplified by, e.g., black-hole configurations.

Generic analyses [4] of cosmological models within this general framework of Liouville

cosmologies, which have been termed Q-cosmologies, reveals that the asymptotic theory

at large times corresponds to the conformal model of [1], with a central charge given by

the asymptotic constant value Q0 of the central-charge deficit. It should be noted that,

in general, the central charge of the Liouville cosmology is not a constant, but a time-

dependent function, Q(t), whose form is found by solving the appropriate generalized

conformal-invariance conditions that describe the restoration of conformal invariance by

the Liouville mode.

The cosmology of [1] corresponds in target space to a linearly-expanding Universe.

However, the question arises how the geometry of the Universe evolves with time and, in

particular, whether and how this Universe exits from this expanding phase and reaches an

Minkowski space-time. The latter is the only realistic candidate for a equilibrium situation

which may be reached asymptotically in target time.

It was attempted in [5] to visualize this evolving string Universe as a world-sheet

quantum Hall system, with the cosmologies of [1], that correspond to various discrete

values of the central-charge deficit Q, being the analogues of the conductivity plateaux

of the Hall system. Transitions between them, from one value Q1 to another value Q2

in, say, the discrete series found in minimal models, would correspond to a non-conformal

theory dressed by the world-sheet Liouville mode. According to [1] therefore, the Universe

would undergo a series of phase transitions before reaching asymptotically the equilibrium

Minkowski space-time that corresponds to the Q = 0 critical theory. The question that

then arises is how to describe such phase transitions non-perturbatively on the world-sheet.

In ordinary field theory, the approach to a phase transition is described by means of a

renormalization-group flow. An alterative to the conventional Wilsonian flow method was

presented in [6], in which a mass parameter is relaxed from some high value, where the

quantum corrections are well controlled, down to small values. This procedure was applied

initially to φ4 field theory and then to QED and some 2 + 1-dimensional models. More

recently, we applied this approach to string theory, imposing a fixed ultraviolet cutoff Λ

on the world sheet, and using the Regge slope α
′

as the control parameter [7]. In this

way, we found a novel fixed point of the world-sheet σ-model describing the bosonic string

in cosmological graviton and dilaton backgrounds, which is non-perturbative in α
′

and

describes a novel time-dependent string cosmology. This novel fixed point is an infrared

fixed point of the Wilsonian renormalization group, and a marginal configuration of the

alternative flow. These theories remain conformal, and one of the non-trivial tasks in [7]

was to argue that the new fixed point respects world-sheet conformal invariance.

In this paper we extend these results to Liouville theory, using as the control parameter

of the novel renormalization flow the central-charge deficit Q. It is known from the original

work on linearly-expanding cosmologies in [1] that the central charge induces mass shifts

∝ Q in the spectrum of target-space excitations: there are tachyonic mass shifts, ∆m2 =
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−|Q2| < 0 for bosons when −Q2 > 0.1 In the case of initially massless states, this tachyonic

shift would imply tachyonic excitations in the spectrum, and hence instabilities. On the

other hand, its role in generating a mass gap makes Q a suitable candidate for controlling

the quantum corrections. By treating it as variable, we can discuss transitions among

various linearly-expanding cosmologies, and eventually the transition to Minkowski space

as a fixed point of the novel renormalization flow.

2. Non-perturbative flows with respect to the central-charge deficit

The bare action for the two-dimensional world-sheet σ model for the bosonic string is

S =

∫

d2ξ

{

Q2

2
∂aφ∂aφ + βQR(2)φ + µ2PB(φ)eφ

}

, (2.1)

where βQ is a function of Q2 = c∗−C
3 , c∗ = 25, and PB(φ) is a Q2-independent bare

polynomial in the Liouville field φ. The effective action Γ, which is the generating functional

for the proper graphs, is defined in the appendix. It describes the corresponding quantum

theory, and is labelled by the parameter Q2.

The target-space Liouville field is space-like in when the corresponding conformal the-

ory is subcritical, i.e., is characterised by a central charge deficit [3], i.e., Q2 > 0. On the

other hand, the target-space Liouville field is time-like in when the corresponding world-

sheet theory is supercritical, i.e., there is a central-charge surplus [1]: Q2 < 0. It is the

latter case that has been employed previously [9, 4] to describe (non-equilibrium) string

cosmologies, which relax to equilibrium (critical-string) configurations asymptotically in

target time, the latter being identified with the zer mode of the time-like Liouville field. In

these cosmologies the initial central charge surplus may be provided by some catastrophic

cosmic event, e.g., the collision of brane worlds in the modern version of string theory [4].

From a world-sheet field-theory point of view, the subcritical string with central charge

C < 1 constitutes a well-behaved theory, where functional computations can be performed,

and the critical (scaling) exponents of the theory are real [3]. For the range 1 < C < 25 of

central charges there are complex scaling exponents, and the Liouville theory is at strong

coupling, which is not well understood at present. On the other hand, the supercritical

Liouville theory C > 25, is characterised by a ghost-like field φ, since the kinetic term of

the Liouville mode comes with the ‘wrong’ (negative in our conventions) sign (c.f. (2.1)).

However, in ths theory the critical exponents are also real, and in fact this regime can be

thought of as the analytical continuation of the region where C < 1, with the replacement

Q → iQ, with the Liouville scaling exponents α also undergoing a similar Wick rotation:

α → iα.

In this paper we shall present a novel way of quantising the Liouville theory, adapting

a method developed previously in [6] for ordinary field theories. There, one identifies a

parameter (control parameter) in the theory, whose changes are governed by certain flow

equations, which may be constructed by following standard (non-perturbative) functional

1We use units where α′ = 1. We note that fermion masses do not acquire a Q2 correction, as discussed

in [1].
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methods. The resulting flow describes the quantum-corrected behaviour of the theory in a

non-perturbative way.

The main idea of this paper is to use the central charge deficit Q2 of the Liouville

theory as an appropriate control parameter. We formulate the flow equations first in the

subcritical case, which is well defined as a field theory, and then we continue analytically

to the supercritical string case with Q2 < 0.

We start our analysis at Q2 >> 1, where the theory is classical, since the bare La-

grangian is dominated by the kinetic term and therefore describes a free theory. The de-

crease of Q2 then induces the appearance of quantum fluctuations, leading to the dressed

theory. It is shown in the appendix that it is possible to derive an exact evolution equation

for Γ with Q2, which is

Γ̇ =

∫

d2ξ

{

1

2
∂aφ∂aφ + β̇QR(2)φ

}

+
1

2
Tr

{

∂

∂ξa

∂

∂ζa

(

δ2Γ

δφξδφζ

)−1
}

, (2.2)

where a dot denotes a derivative with respect to Q2. In eq. (2.2), quantum fluctuations

are contained in the trace on the right-hand side. This trace needs a regulator, for which

we use a fixed world-sheet cutoff Λ.

Any similarity of our evolution equation (2.2) to the exact Wilsonian renormalization

equation is only apparent, since here we consider a fixed cutoff, and look at the flows in Q2.

We emphasize that eq. (2.2) is exact and corresponds to the resummation of all loops, even

though superficially it has the structure of a one-loop correction. The reason for this is the

fact that the trace contains the dressed parameters, and not the bare ones: thus eq. (2.2) is

a self-consistent partial differential equation for Γ, which describes the full quantum theory.

In order to obtain physical information from the evolution equation (2.2), one has

to assume a functional dependence of the effective action Γ. Therefore, we consider the

following Ansatz:

Γ =

∫

d2ξ

{

ZQ

2
∂aφ∂aφ + βQR(2)φ + µ2PQ(φ)eφ

}

, (2.3)

where Z is a Q2-dependent wave-function renormalization, and PQ(φ) is a Q2-dependent

function of φ. The form (2.3) is dictated by conformal invariance. Note that we do not

expect quantum corrections for βQ, since no term linear in φ is generated by the trace in

eq. (2.2). It is shown in the appendix that the Ansatz (2.3), inserted into eq. (2.2), leads

to the following evolution equations:

ŻQ = 1 (2.4)

ṖQ(φ) = −
PQ(φ) + 2P

′

Q(φ) + P
′′

Q(φ)

8πZ2
Q

ln

(

1 +
ZQe−φΛ2/µ2

PQ(φ) + 2P
′

Q(φ) + P
′′

Q(φ)

)

,

where a prime denotes a derivative with respect to φ.

We observe that Z remains classical and does not receive any quantum corrections.

Since the constant of integration in the evolution equation for Z(Q) is absorbed into the
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critical value of the central charge, we find simply that ZQ = Q2 and the resulting evolution

equation for P is

ṖQ(φ) = −
PQ(φ) + 2P

′

Q(φ) + P
′′

Q(φ)

8πQ4
ln

(

1 +
Q2e−φΛ2/µ2

PQ(φ) + 2P
′

Q(φ) + P
′′

Q(φ)

)

. (2.5)

We observe that there is only one exactly-marginal configuration, namely one with Ṗ = 0,

which must have P + 2P
′

+ P
′′

= 0. The solution for P is then

P (φ) = (C1 + C2φ)e−φ, (2.6)

where C1, C2 are Q2-independent constants. This solution corresponds to a linear potential

µ2P (φ)eφ = µ2(C1 + C2φ), (2.7)

which could have been expected, since this form does not generate quantum fluctuations,

and therefore should not depend on Q2.

3. Solution in the case PB(φ) = 1

In the case where the bare potential term is µ2eφ, it is known that the effective potential

is of the form µ2
R exp(gRφ), where µ2

R and gR are renormalized parameters [8]. We indeed

find a solution of (2.5) if we consider the following Ansatz for the effective Liouville-mode

potential V (φ):

V (φ) = µ2PQ(φ)eφ, PQ(φ) = ηQ exp(εQφ), (3.1)

where ηQ and εQ are functions of Q2. Since the limit Q2 → ∞ corresponds to the classical

theory, the corresponding limits for these functions are η∞ = 1 and ε∞ = 0, which we use

as initial conditions when we integrate their evolution equations. In order to check that

the Ansatz (3.1) is indeed correct, we consider separately the two cases of large Q2 À 1

and Q2 → 0.

3.1 Large Q2

If we insert the Ansatz (3.1) into eq. (2.5), we obtain

η̇Q + ηQε̇Qφ =
ηQ(1 + εQ)2

8πQ4

{

− ln

(

Q2Λ2

µ2ηQ(1 + εQ)2

)

+ (1 + εQ)φ + O

(

µ2

Q2Λ2

)}

, (3.2)

where we need the condition Q2Λ2 >> µ2 for the Ansatz (3.1) to be consistent. Indeed,

after the expansion in µ2/(Q2Λ2), one is left with a constant and a term linear in φ, which

can then be identified with the left-hand side of eq. (3.2), leading to

ε̇Q =
(1 + εQ)3

8πQ4

η̇Q =
ηQ(1 + εQ)2

8πQ4

{

− ln

(

Q2Λ2

µ2(1 + εQ)2

)

+ ln(ηQ)

}

. (3.3)
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The evolution equation for εQ can easily be solved to yield

1 + εQ =

√

4πQ2

4πQ2 + 1
, (3.4)

and we stress again that this solution is not the result of a loop expansion, but is exact in

the framework of the Ansatz (2.3).

The solution (3.4) leads to the following equation for ηQ:

η̇Q

ηQ
=

−1

2Q2(4πQ2 + 1)

{

ln

(

Λ2

µ2

)

+ ln

(

Q2 +
1

4π

)

− ln(ηQ)

}

, (3.5)

for which one can find an approximate solution if Q2 >> 1, where ηQ ' 1. We have then,

for a fixed cutoff Λ, and keeping the dominant contributions,

η̇Q ' −
ln(Q2)

8πQ4
, (3.6)

which leads to the following dominant behaviour

ηQ ' 1 +
ln(Q2)

8πQ2
. (3.7)

In the limit where Q2 >> 1 and from eq. (3.4), we also have εQ ' −1/(8πQ2), so that the

effective potential is finally

V (φ) = µ2PQ(φ)eφ ' µ2

(

1 +
ln(Q2)

8πQ2

)

exp

{(

1 −
1

8πQ2

)

φ

}

. (3.8)

3.2 Limit Q2 → 0

In the limit where Q2 → 0, the expansion (3.2) is not valid any more, and one has to start

from the original equation (2.5). An expansion in Q2 for a fixed cutoff Λ then gives

η̇Q + ηQε̇Qφ = −
Λ2/µ2

8πQ2
exp {−(1 + εQ)φ} + O(1). (3.9)

For the ansatz (3.1) to be consistent, we consider an expansion in φ of the previous equation,

and identify the powers of φ to obtain

ε̇Q =
Λ2/µ2

8πQ2

1 + εQ

ηQ

η̇Q = −
Λ2/µ2

8πQ2
. (3.10)

These equations can easily be integrated to give

1 + εQ '
∣

∣ln(Q2)
∣

∣

−1

ηQ '
Λ2/µ2

8π

∣

∣ln(Q2)
∣

∣ , (3.11)
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where we have kept only the contributions that are dominant in Q2. Note that 1+εQ → 0,

which is consistent with the expansion of the exponential function appearing in eq. (3.9).

Finally, the effective potential behaves as

V (φ) = µ2PQ(φ)eφ '
Λ2

8π

∣

∣ln(Q2)
∣

∣ exp

{

φ

|ln(Q2)|

}

'
Λ2

8π

∣

∣ln(Q2)
∣

∣ , (3.12)

and therefore goes to a (divergent) constant when Q2 → 0. As a result, this limit consists

of a trivial theory, where the field φ neither propagates nor interacts. In this limit the

quantum fluctuations, from which εQ is generated, are strong enough to cancel the classical

potential. This becomes visible in the present scheme because it is non-perturbative.

4. Conformal invariance

One of the most important properties of the Liouville field φ is the restoration of the

conformal invariance of world-sheet vertex operators after Liouville dressing [3], such that

the Liouville-dressed world-sheet theory, incorporating the extra dynamics of the Liouville

mode φ, is conformally invariant.

Before commencing our discussion, we recall that it is customary [3] to renormalize

the Liouville field so that it has a canonically-normalized kinetic term:

φ −→ φ̂ ≡ |Q|φ. (4.1)

For a world-sheet (Σ) vertex operator Vi that deforms a fixed-point theory with action S∗:

Sdeform = S∗ + gi

∫

Σ
Vi, (4.2)

the Liouville-dressing procedure [3] is defined by coupling the Liouville mode φ, with action

S ≡ SL (2.1), to (4.2) as follows:

Sdeform,Liouville = S∗ + SL + gi

∫

Σ
eαiφ̂Vi, (4.3)

where we have used the canonically-normalized field φ̂ (4.1).

The Liouville anomalous dimension terms αi are such that, if the deformed subcritical

theory has central-charge deficit Q2 > 0, then the dressed deformation in (4.3) eαiφ̂Vi is

conformally invariant, provided that,

αi (αi + Q) = −(2 − ∆i) , Q2 > 0 (subcritical strings), (4.4)

where ∆i is the conformal (scaling) dimension of the operator Vi, and thus ∆i − 2 is the

scaling dimension. The relative signs are appropriate for the subcritical string case Q2 > 0

of interest to us in this section, and are such that the Liouville dimension αi and Q are

real. The presence of the Q term arises because of the appearance of the central charge

deficit Q in the world-sheet curvature term of the perturbative Liouville action [3].

In the model at hand, the only deformation we considered explicitly was that implied

by the identity operator on the world-sheet, namely the two-dimensional cosmological
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constant, which leads, in the quantum theory, to the effective Liouville potential term (3.1).

This corresponds to the case with ∆i = 0 in (4.4). Moreover, in our (non-perturbative)

quantum theory, the rôle of the Liouville anomalous dimension is played by (1 + εQ)/Q,

where the numerator is the exponent in (3.1), whilst the rôle of the central charge deficit

Q in (4.4), namely the coefficient of the world-sheet curvature term in the normalized

Liouville mode case φ̂, is provided by the function βQ/Q. Thus conformal invariance

should be guaranteed provided that the following relation holds:

(1 + εQ) (1 + εQ + βQ) = −2Q2 =⇒ βQ = −1 − εQ −
2Q2

1 + εQ
. (4.5)

As discussed in the appendix and in previous sections, our quantization procedure deter-

mines εQ as a function of Q, so as to satisfy the appropriate flow equations (3.3) (and (3.10)

for the Q2 → 0+ case), assuming a specific form of the function Z = Q2, which receives no

quantum corrections. Moreover, as we have seen, in our approach the function βQ (which

is also not renormalized) is left undetermined. Following the above discussion (c.f. (4.5)),

the requirement of conformal invariance provides an extra constraint that determines the

function βQ in terms of εQ, with Z = Q2.

It is worth checking the consistency of this approach in the conformal limit Q2 → 0+,

where one expects the Liouville theory to decouple. Indeed, in such a limit, the expression

for 1 + εQ is provided by (3.11). From (4.5), then, we derive to leading order as Q2 → 0+:

βQ ' −1 − εQ ' −
1

| ln(Q2)|
→ 0− . (4.6)

which is consistent with the decoupling of the Liouville mode in this limit, since each of the

three terms in the world-sheet action (2.1) either vanishes (Z, βQ) or becomes an irrelevant

(Liouville-independent) constant (as is the case with the two-dimensional cosmological

constant term).

In a similar spirit, the limit Q2 À 1 can also be studied analytically. To this end, we

first notice that the relation (4.5) is generic and applies to all ranges of Q2. In the large-Q2

case, εQ ' −1/8πQ2, and

βQ ' −2Q2 + O(1) < 0, Q2 → +∞. (4.7)

We now remark that the central-charge term is not supposed to change sign during its

flow [1, 3], i.e., a sub(super)critical theory should remain sub(super)critical until its reaches

an equilibrium point. From (4.6), (4.7) we observe that this expectation is compatible with

the above analysis, as in both limits βQ < 0.

5. Case with Q2 < 0: intepretation of the Liouville mode as target time

As mentioned above, the region of central charges for which Q2 < 0 can be treated by

analytic continuation of the C < 1 case, where formally Q → iQ and the Liouville scal-

ing dimensions α → iα. In this case, the exponents of the Liouville effective potential

– 8 –
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terms (3.1), where - as we have discussed in the previous section- 1 + εQ plays the rôle of

a Liouville scaling dimension for the identity operator on the world-sheet, remain real.

From a target-space-time viewpoint, in this régime the Liouville-mode is time-like, and

thus its world-sheet zero mode can be interpreted as the target time [9, 4]. In this case,

the effective potential term in the Liouville action corresponds in general to a cosmological

tachyonic-field instability. However, as we have seen in (3.12), in the limit |Q2| → 0+

the effective potential term becomes a constant independent of the Liouville field, so the

instability disappears and the target-space theory is stabilized. The remaining part of the

section addresses some subtleties in these arguments, that arise because the target time is

actually identified [9] (up to a sign) with a renormalized Liouville mode ≡ |Q|φ, and this

renormalization is singular in the limit |Q2| → 0+.

As already mentioned, it is customary [3] to renormalize the Liouville field so that it

has a canonically normalized kinetic term. It is in the normalized form φ̂ (4.1) that the

properties of the Liouville mode as a field restoring conformal symmetry in non-critical

world-sheet σ-model theories are best studied [3, 1].

If we had used this normalization from the beginning, the only term in the two-

dimensional effective action depending explicitly on the control parameter Q would have

been that coupled to the world-sheet curvature, which depends linearly on the normal-

ized Liouville field, and thus does not generate any quantum corrections. However, having

derived the effective potential (3.12) above, we can now insert the correctly normalized

Liouville mode and then take the limit |Q2| → 0+. In this case, the quantum-corrected

potential, expressed in terms of the normalized field φ̂, becomes:

µ2PQ(φ̂)eφ̂ '
Λ2

8π

∣

∣ln |Q2|
∣

∣ exp

{

φ̂

|Q ln |Q2||

}

. (5.1)

Notice first that, upon the above-mentioned complex continuations Q → iQ and (1 +

εQ) → i(1 + εQ) in order to discuss formally the supercritical Q2 < 0 case, the exponent

of the effective potential remains real. We then see that the limit |Q2| → 0+ leads to

divergent terms in the branch φ̂ ∈ (0, + ∞)), while such terms become zero in the branch

φ̂ ∈ (−∞, 0)).

As already mentioned, the quantity that is actually identified [9] as the target time t

in supercritical string theories with Q2 < 0 is minus the world-sheet zero mode, φ̂, so that

φ̂ = −t . (5.2)

This identification can be derived by using conformal field theory on the world sheet, as

described briefly below.2

This implies that, for the flow of cosmological time: t → +∞, only the branch φ̂ ∈

(−∞, 0) is of physical relevance, which leads to a stable target-space-time theory in the

limit |Q2| → 0+ of the full quantum theory, for the reasons explained above. This target

2It may also be imposed dynamically in certain concrete examples of Liouville-time cosmologies involving

colliding brane worlds [10]. In the latter case, the identification (5.2) is enforced for energetic reasons,

specifically the minimization of the effective potential of the target-space theory.
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IR
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UV

A

Figure 1: The solid line is the the Saalschutz contour in the complex area (A) plane, which is used

to continue analytically the prefactor Γ(−s) for s ∈ Z+. It has been used in conventional quantum

field theory to relate dimensional regularization to the Bogoliubov-Parasiuk-Hepp-Zimmermann

renormalization method. The dashed line denotes the regularized contour, which avoids the ultra-

violet fixed point A → 0, which is used in the closed time-like path formalism.

space stability, expressed via the disappearance of the tachyonic modes and the vanishing

of the tachyonic mass shifts ∆m2 = −|Q2| < 0 that characterize the bosonic string states

in [1], constitutes a physical argument in favour of the rôle of the limit |Q2| → 0+ as the

final point of the flow with respect to the central charge in our approach.

For completeness, we review here briefly the derivation of the result (5.2) from a

conformal-field-theory analysis. First of all, we note that even after quantum corrections,

as our analysis in section 3 has shown, the effective potential assumes the form (3.1).

From a world-sheet field-theory point of view, this corresponds to a vertex operator of a

Liouville-dressed cosmological constant term, V (z) = eαφ̂, where z is a complex world-

sheet coordinate and α(= εQ) is a constant, depending on the central-charge deficit Q,

which plays the rôle of the Liouville anomalous dimension [3]. More generally, one may

consider Liouville-dressed vertex operators V L
i ∼ eαiφ̂Vi, where αi is the corresponding

Liouville anomalous dimension. The N-point correlation functions of the world-sheet vertex

operators Vi can be evaluated by first performing the integration over the world-sheet

Liouville zero mode. This leads to expressions of the form:

< Vi1 . . . ViN >µ= Γ(−s)µs < (

∫

d2z
√

γ̂eαφ̂)sṼi1 . . . ṼiN >µ=0, (5.3)

where the Ṽi have the Liouville zero mode removed, µ is a scale related to the world-

sheet cosmological constant, and s is the sum of the anomalous dimensions of the Vi : s =

−
∑N

i=1
αi

α
−Q/α. As it stands, the Γ(−s) factor implies that (5.3) is ill-defined for s = n+ ∈

Z+. Such cases include physically interesting Liouville models, such as those describing

matter scattering off a two-dimensional (s-wave four-dimensional) string black hole [9],

when it is excited to a ‘massive’ (topological) string state corresponding to a positive

integer value for s = n+ ∈ Z+. Similar divergent expressions are met in general Liouville

theory when computing the correlation functions by analytic continuation of the central

charge of the theory, so that the sums s over Liouville anomalous dimensions acquire

positive integer values [11]. This also leads to ill-defined Γ(−s) factors in the appropriate

analytically-continued correlators.

Constraining the world-sheet area A at a fixed value [3], one can use the following

– 10 –



J
H
E
P
0
3
(
2
0
0
7
)
0
6
0

World-sheet ‘bounces’

infrared

ultra-
violet

infrared

Figure 2: Schematic repesentation of the evolution of the world-sheet area as the renormalization-

group scale moves along the contour of figure 1.

integral representation for Γ(−s):

Γ(−s) =

∫

dAe−AA−s−1, (5.4)

where A is the covariant area of the world-sheet. In the case s = n+ ∈ Z+ one can then

regularize by analytic continuation, replacing (5.4) by an integral along the Saalschutz

contour shown in figure 1 [12, 9]. This is a well-known method of regularization in conven-

tional field theory, where integrals of forms similar to (5.4) appear in terms of Feynman

parameters.

A similar regularization was used to prove the equivalence of the Bogolubov-Parasiuk-

Hepp-Zimmerman renormalization prescription with dimensional regularization in ordinary

gauge field theories [13]. One result of such an analytic continuation is the appearance of

imaginary parts in the respective correlation functions, which in our case are interpreted [12,

9] as renormalization-group instabilities of the system.

Interpreting the latter as an actual time flow, with the identification of the (world-

sheet) zero mode with the target time [9], we then interpret the contour of figure 1 as

implying evolution of the world-sheet area in both (negative and positive) directions of

time as seen in figure 2, i.e., infrared fixed point → ultraviolet fixed point → infrared

fixed point. In each half of the world-sheet diagram of figure 2, the Zamolodchikov C

theorem [15] tells us that we have an irreversible Markov process.

This in turn implies a ‘bounce’ interpretation of the renormalization-group flow of

figure 2, in which the infrared fixed point with large world-sheet area A → ∞ is a ‘bounce’

point, similar to the corresponding picture in point-like field theory [14]. Therefore, the

physical flow of time t is taken to be opposite to the conventional renormalization-group

flow, i.e., from the infrared to the ultraviolet (A → 0) fixed point on the world sheet. In

terms of the world-sheet zero mode of the Liouville field φ̂0, we have φ̂0 ∼ lnA ∈ (0, −∞).

Our analysis in the previous section shows that the effective potential term (5.1) vanishes in

the limit Q2 → 0, so this limit corresponds to a stable target-space theory. We stress once

more that this is consistent with the disappearance (as |Q2| → 0+) of tachyonic instabilities

in the target-space theory, as manifested through tachyonic mass shifts ∆m2 = −|Q2| < 0 of

initially (i.e, before Liouville dressing) massless target-space excitations. Thus, the analysis
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of this paper reinforces the previous arguments that the (zero mode of the) world-sheet

Liouville mode may be identified (up to a sign) with the target time.

6. Summary and perspectives

We have demonstrated in this paper how a novel renormalization-group technique for

controlling quantum effects by relaxing a mass parameter can be used to obtain non-

perturbative results for non-critical string models. We have studied the behaviour of Li-

ouville string theory as a function of the departure from criticality, as parametrized by

the central-charge deficit Q. We have identified a renormalization-group fixed point in the

limit Q2 → 0+, in which the dynamics of the Liouville field becomes trivial, as it neither

propagates nor interacts, and the target space-time is of Minkowski type (in the supercriti-

cal string case). We have shown that the resulting theory is free of tachyonic instabilities in

target space in the limit |Q2| → 0+. This analysis supports the previous identification [9]

of the (zero mode of the) Liouville mode with the target time.

This approach may in the future be used to discuss the transitions between linear-

dilaton cosmological models with different values of Q, and ultimately the transition to an

asymptotic state. It has been shown previously that Q corresponds to the vacuum energy

in conventional field-theoretical models of cosmological inflation [4, 9]. The transition

from scalar field energy to relativistic particles has bee studied extensively within that

framework, and our approach provides a framework for addressing such cosmological phase

transitions in string theory.

Another area where this technique may be applied is the Quantum Hall effect (QHE).

The different values of Q correspond to different Hall conductivity plateaux, and our ap-

proach can be used to discuss transitions between these plateaux. The analogy between

string cosmology and black-hole physics, on the one hand, and the QHE, on the other

hand, has been advertised previously [5]. The novel renormalization-group described here

provides a tool that can be used to quantify this relationship.

Acknowledgments

The work of J.E. and N.E.M. was supported in part by the European Union through the

Marie Curie Research and Training Network UniverseNet (MRTN-CT-2006-035863).

A. Evolution equation

We review here the construction of the effective action Γ and derive the equation describ-

ing its evolution with Q. For reasons explained in the text, we restrict ourselves to the

subcritical string case Q2 ∝ c∗ − C > 0. The supercritical string case Q2 < 0 is treated

formally by means of analytic continuation. In terms of the microscopic field φ̃, the bare

action is

S =

∫

d2ξ

{

Q2

2
∂aφ̃∂aφ̃ + βQR(2)φ̃ + µ2PB(φ)eφ̃

}

, (A.1)
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The partition function, namely the functional of the source j, is defined as

Z[j] =

∫

D[φ̃] exp

(

−S −

∫

d2ξ jφ̃

)

, (A.2)

and is related to the functional W that generates connected graphs by

W [j] = − lnZ[j]. (A.3)

The classical field φ is defined by differentiation of W with respect to the source j, and we

have

δW

δjξ
= −

1

Z

∂Z

∂jξ
=

< φ̃ξ >

Z
= φξ

δ2W

δjξδjζ

= φξφζ −
< φ̃ξφ̃ζ >

Z
, (A.4)

where the quantum vacuum expectation value is

< · · · >=

∫

D[φ̃](· · ·) exp

(

−S −

∫

d2ξ jφ̃

)

. (A.5)

The effective action Γ, a functional of the classical field φ, is introduced as the Legendre

transform of W :

Γ[φ] = W [j] −

∫

jφ, (A.6)

where the source j has to be seen as a functional of φ. The functional derivatives of Γ are

then

δΓ

δφξ
= −jξ

δ2Γ

δφξδφζ
= −

(

δφξ

δjζ

)−1

= −

(

δ2W

δjξδjζ

)−1

. (A.7)

From eqs. (A.4), the equation describing the evolution of W with Q2 is

Ẇ =
1

Z

∫

d2ξ

∫

d2ζ

{

1

2

∂

∂ξa

∂

∂ζa

〈

φ̃ξφ̃ζ

〉

+ β̇QR(2)
〈

φ̃ξ

〉

}

δ(2)(ξ − ζ)

=

∫

d2ξ

{

1

2
∂aφ∂aφ + β̇QR(2)φ

}

−
1

2
Tr

{

∂

∂ξa

∂

∂ζa

(

δ2W

δjξδjζ

)}

. (A.8)

In order to find the evolution equation for Γ, one should remember that its independent

variables are Q ad φ, so that

Γ̇ = Ẇ +

∫

d2ξ
δW

δj
∂Qj −

∫

d2ξ ∂Qjφ = Ẇ . (A.9)

Using the previous results, finally we have

Γ̇ =

∫

d2ξ

{

1

2
∂aφ∂aφ + β̇QR(2)φ

}

+
1

2
Tr

{

∂

∂ξa

∂

∂ζa

(

δ2Γ

δφξδφζ

)−1
}

. (A.10)
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In order to extract physical quantities from the evolution equation (A.10), we assume

the following functional dependence of the effective action:

Γ =

∫

d2ξ

{

ZQ

2
∂aφ∂aφ + βQR(2)φ + µ2PQ(φ)eφ

}

. (A.11)

We have then

δ2Γ

δφξδφζ
=

{

ZQ∂a∂
a + U

′′

Q(φ)
}

δ(2)(ξ − ζ), (A.12)

where UQ(φ) = µ2PQ(φ)eφ,

and a prime denotes a derivative with respect to φ. For the evolution of P only, it would be

enough to insert in the evolution equation (A.10) a constant field φ0. But in order to derive

the evolution of ZQ, one needs a varying field and we consider thus φ = φ0 + 2ρ cos(kξ),

where k is some fixed momentum. If A denotes the surface area of the world sheet, the

effective action then reads

Γ = A
(

Zρ2k2 + βQR(2)φ0 + UQ(φ0) + ρ2U
′′

Q(φ0) + O(ρ3)
)

, (A.13)

so that the evolution equation for U is obtained by identifying the k-independent terms in

eq. (A.10), and the evolution equation for Z by identifying the terms proportional to ρ2k2.

The second derivative of the effective action reads for this configuration φ, in Fourier

components,

δ2Γ

δφpδφq
=

(

ZQp2 + U
′′

Q(φ0)
)

(2π)2δ(2)(p + q) (A.14)

+ρU
′′′

Q (φ0)(2π)2
[

δ(2)(p + q + k) + δ(2)(p + q − k)
]

+ O(ρ2).

The inverse of this matrix with components p, q is computed using the following expansion

(A + B)−1 = A−1 − A−1BA−1 + A−1BA−1BA−1 + · · ·, (A.15)

where A is a diagonal matrix with indices p, q, and B is off-diagonal and proportional to

ρ2. In the previous expansion, the term linear in A−1 is independent of ρ, k. It leads to

the evolution of U , and makes the following contribution to the trace which appears in

eq. (A.10):

A

∫

d2p

(2π)2
p2

ZQp2 + U
′′

Q(φ0)

= A
Λ2

4πZQ
−A

U
′′

Q(φ0)

4πZ2
ln

(

1 +
ZQΛ2

U
′′

Q(φ0)

)

. (A.16)

We note that the quadratic divergence is field-independent, and therefore is irrelevant. Also,

the term linear in B, which appears in the expansion (A.15), has a vanishing trace since it

is off-diagonal. The term quadratic in B in the expansion (A.15) contains a contribution

that is proportional to ρ2 and independent of k, which does not bring any new information,
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since it corresponds to the evolution of U
′′

, as can be seen from eq. (A.13). It also contains

a contribution proportional to ρ2k2, which leads to the evolution of Z. The corresponding

trace is

Aρ2
[

U
′′′

Q (φ0)
]2

∫

d2p

(2π)2
4p2

(

ZQp2 + U
′′

Q(φ0)
)4

(

−ZQk2 +
4Z2

Q(kp)2

ZQp2 + U
′′

Q(φ0)

)

+ O(k4)

= A
ρ2k2

πZQ

[

U
′′′

Q (φ0)
]2

∫ ∞

0
dx







−x
(

x + U
′′

Q(φ0)
)4 +

2x2

(

x + U
′′

Q(φ0)
)5






+ O(k4)

= O(k4), (A.17)

where we used the fact that, for any function f(p2),
∫

d2p

(2π)2
(kp)2f(p2) =

k2

8π

∫

d(p2)p2f(p2). (A.18)

As a consequence, Z does not receive quantum corrections. Finally, the evolution equation

for P is found from eqs. (A.10), (A.13) and (A.16) where we disregard the field-independent

quadratic divergence, to be

ṖQ(φ) = −
PQ(φ) + 2P

′

Q(φ) + P
′′

Q(φ)

8πZ2
Q

ln

(

1 +
ZQe−φΛ2/µ2

PQ(φ) + 2P
′

Q(φ) + P
′′

Q(φ)

)

. (A.19)

The reader can now see easily why the supercritical string case Q2 < 0 presents certain

problems that can be treated by analytic continuation.

Considering the case Q2 < 0 and a Euclidean world sheet metric, we have

δ2S(φ0)

δφ(p)δφ(q)
=

{

−|Q2|(p2
1 + p2

2) + µ2eφ0

}

δ(2)(p + q). (A.20)

The propagator is the inverse of this, and hence cannot be integrated because of the pole,

whose presence is linked to the supercriticality of the string. This pole is not the usual one

corresponding to a mass. Indeed, if one returns to a Minkowski world-sheet metric, one

obtains:
δ2S(φ0)

δφ(p)δφ(q)
=

{

|Q2|(p2
0 − p2

1) + µ2eφ0

}

δ(2)(p + q), (A.21)

where p0 = ip2. One should perform another ‘Wick rotation’ on p1 in order to treat the

problem properly.

Formally, these issues are resolved simply by treating the Q2 < 0 case in our method

by the above-mentioned complex continuation of both Q → iQ and the Liouville scaling

exponents: α =
(1+εQ)

Q
→ iα.
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